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SOLUTIONS FOR ASSIGNMENT #4

Reading Assignments:
Section 3.2 of Peskin and Schroeder.

Problem 1
Do Problem 3.4 in Peskin and Schroeder, but leave out part (e).
Solution:
(a) According to Eq. (37) in Peskin and Schroeder, and using the identity ~σ∗ = −σ2~σσ2,
the χ spinor has the following property under Lorentz transformation Λ:

χ(x) → e−i~σ
2
·(~θ−i~β)χ(Λ−1x),

iσ2χ∗(x) → ei~σ
2
·(~θ+i~β)

(
iσ2χ∗(Λ−1x)

)
.

Then from Problem 3.1(c) in Peskin and Schroeder we have proven the following identity
for σ̄µ:

e−i~σ
2
·(~θ+i~β)σ̄µe−i~σ

2
·(~θ−i~β) = Λµ

ν σ̄
ν ,

which implies

iσ̄ · ∂χ(x) → iσ̄ · ∂ e−i~σ
2
·(~θ−i~β)χ(Λ−1x)

= ei~σ
2
·(~θ+i~β)iσ̄µ (Λµ

ν∂
ν)χ(Λ−1x).

Therefore we have shown that the equation[
iσ̄ · ∂χ(x)− imσ2χ(x)

]
→ ei~σ

2
·(~θ+i~β)

[
iσ̄µ (Λµ

ν∂
ν)χ(Λ−1x)− imσ2χ(Λ−1x)

]
is relativistically invariant. To show that the equation also implies Klein-Gordon equation,
simply take the complex-conjugate equation

χ =
1

m
(σ2)∗(σ̄)∗ · ∂χ∗

and plug back into the original equation to arrive at (∂2 +m2)χ∗ = 0.
(b) The action is

S =

∫
d4x

[
χ†iσ̄ · ∂χ+

im

2

(
χTσ2χ− χ†σ2χ∗)] .

Under complex-conjugation, the kinetic term becomes∫
d4x(χ†iσ̄ · ∂χ)∗ =

∫
d4x(−i)(∂µχ

†)σ̄µχ =

∫
d4xχ†iσ̄ · ∂χ
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where we have used the Grassmann nature of the Majorana spinor

(αβ)∗ = −α∗β∗

as well as integration by part in the last step. The reality of the mass term in the action
also follows from the Grassmann variable. It is straightforward to see that δS/δχ† gives the
Majorana equation.
(c) For ψD = (ψL, ψR)T ,

LD = ψ̄(i/∂ −m)ψ = iψ†
Lσ̄ · ∂ψL + iψ†

Rσ · ∂ψR −m(ψ†
LψR + ψ†

RψL)

Now if we write ψL = χ1 and ψR = iσ2χ∗
2,

LD = iχ†
1σ̄ · ∂χ1 + iχT

2 σ
2(σ · ∂)σ2χ∗

2 − im(χ†
1σ

2χ∗
2 − χT

2 σ
2χ1),

where
χT

2 σ
2(σ · ∂)σ2χ∗

2 =
(
χT

2 σ
2(σ · ∂)σ2χ∗

2

)T
= χ†

2σ̄ · ∂χ2.

So the Lagrangian is

LD = iχ†
1σ̄ · ∂χ1 + iχ†

2σ̄ · ∂χ2 − im(χ†
1σ

2χ∗
2 − χT

2 σ
2χ1).

(d) The action has in (c) has a global symmetry χ1 → eiαχ1 and χ2 → e−iαχ2. The current

corresponding the this global symmetry is Jµ = χ†
1σ̄

µχ1−χ†
2σ̄

µχ2. This current is conserved
∂µJ

µ = 0. The action in (b) has a global symmetry χ → eiαχ if the mass term is absent
m = 0. The current is Jµ = χ†σ̄χ, whose divergence is proportional to the mass term
∂µJ

µ = m(χTσ2χ + χ†σ2χ∗). A theory of N massive 2-component fermions with O(N)
symmetry can be written as

S =
N∑

i=1

∫
d4x iχ†

i σ̄ · ∂χi +
im

2

(
χT

i σ
2χi − χ†

iσ
2χ∗

i

)
.

Problem 2
Do Problem 3.5 in Peskin and Schroeder.
Solution:
(a) The Lagrangian

L = ∂µφ
∗∂µφ+ χ†iσ̄ · ∂χ+ F ∗F

is known as the Wess-Zumino model and the simplest N = 1 SUSY theory in four dimen-
sions. The variation under a infinitesimal global SUSY transformation δε is

δεφ = −iεTσ2χ, δεφ
∗ = +iχ†σ2ε∗,

δεχ = εF + σ · ∂φσ2ε∗, δεχ
† = ε†F ∗ + εTσ2σ · ∂φ∗,

δεF = −iε†σ̄ · ∂χ, δεF
∗ = +i(∂µχ

†)σ̄µε.
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(A global transformation means the two-component Grassmann spinor is constant.) From
the above one can compute

δL
δεφ

δεφ+ (c.c.) = +iεTσ2χ∂2φ∗ − iχ†σ2ε∗∂2φ (1)

δL
δεχ

δεχ+ (c.c.) = ε†(iσ̄ · ∂χ)F ∗ − i(∂µχ
†)σ̄µεF

+εTσ2σ · ∂φ∗(iσ̄ · ∂χ)− i(∂µχ
†)σ̄µσ · ∂φσ2ε∗ (2)

δL
δεF

δεF + (c.c.) = −iε†σ̄ · ∂χF ∗ + i(∂µχ
†)σ̄µεF. (3)

It is easy to see that the first line in Eq. (2) cancels Eq. (3). On the other hand, the
second line in Eq. (2) can be re-written, using the Leibniz rule of derivative and up to total
derivatives, as

−iεTσ2σµσ̄ν∂µ∂νφ
∗χ+ iχ†σµσ̄ν∂µ∂νφσ

2ε∗

We then need to compute σµσ̄ν∂µ∂ν = (1/2){σµ, σ̄ν}∂µ∂ν . Using the definitions σµ = (1, ~σ)
and σ̄µ = (1,−~σ), as well as {σa, σb} = 2δab for Pauli matrices, one can verify that

σµσ̄ν∂µ∂ν =
1

2
{σµ, σ̄ν}∂µ∂ν = ∂2

Then one sees immediately the second line in Eq. (2) cancels Eq. (1), up to total derivatives.
The Lagrangian is therefore invariant.
(b) The interacting part of the Wess-Zumino model is

∆L =

(
mφF +

1

2
imχTσ2χ

)
+ (c.c.)

One computes the variation of ∆L as

−imεTσ2χF − imφε†σ̄ · ∂χ+
i

2
m

[
(εTF − ε†σ̄ · ∂φσ2)σ2χ+ χTσ2(εF + σ · ∂φσ2ε∗)

]
+ (c.c.)

It is straightforward to verify that the last term gives exactly the same contribution as the
third term, and that the whole variation is zero up to a total derivative.

The equation of motion for the auxiliary field F is F = −mφ∗ and F ∗ = −mφ. Plug it
back into the Lagrangian we see the fermion and the boson have the same mass.
(c) We only have to show the part involving the superpotential is invariant under SUSY
transformation:

δεLW = −iε†σ̄ · ∂χi
∂W

∂φi

+
∂2W

∂φi∂φj

Fi(−iεTσ2χj)

+
i

2

∂2W

∂φi∂φj

[
(εTFi − ε†σ̄ · ∂φiσ

2)σ2χj + χT
i σ

2(εFj + σ · ∂φjσ
2ε∗)

]
+
i

2

∂3W

∂φi∂φj∂φk

χT
i σ

2χj(−iεTσ2χk), (4)

where the first term is equivalent to, up to a total derivative,

+iε†σ̄ · ∂φjχi
∂2W

∂φi∂φj
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so in the end the first two lines in Eq. (4) cancel up to a total derivative, in a similar fashion
to (b). The last line, however, is zero identically because both χi and ε are two-component
Grassmann spinors. More explicitly, the last term is

1

2

∂3W

∂φi∂φj∂φk

(χ1χ2 − χ2χ1)(ε1χ2 − ε2χ1),

which contains either χiχi = −χiχi = 0.
The equation of motion for the auxiliary field with the superpotential is F ∗ = −∂W/∂φi

so the Lagrangian now becomes

L = ∂µφ
∗
i∂

µφi + χ†
i iσ̄ · ∂χi −

∣∣∣∣∂W [φ]

∂φi

∣∣∣∣2 +
i

2

∂W [φ]

∂φi∂φj

χT
i σ

2χj + c.c. .

The equations of motion for φi and χi are

∂2φi =
∂

∂φ∗
i

∣∣∣∣∂W [φ]

∂φi

∣∣∣∣2 − i

2

∂W [φ]

∂φi∂φj∂φk

χT
j σ

2χk + c.c.

iσ̄ · ∂χi =
i

2

(
∂W [φ]

∂φi∂φj

)∗

σ2χ∗
j .

With the above expressions it is simple to get the equations for motion for n = 1 and
W = gφ3/3.

Problem 3
(a) In the class we showed that the conserved currents corresponding to spacetime transla-
tions xα → xα − aα are the energy-momentum tensor T µν . Since we have been considering
Lorentz-invariant quantum field theories, derive the conserved currents corresponding to in-
finitesimal Lorentz transformations Λα

β = δα
β + ωα

β.
(Hint: recall that in the case of translations, there are really four currents T µα ≡ (jµ)α, one
for each aα. In this case there are really six conserved currents Mµα

β ≡ (jµ)α
β, one for each

ωα
β. You may wish to express Mµα

β in terms of T µα.)
(b) What is the physical interpretation for each of the conserved charges in (a)? Separate
your discussions into those corresponding to rotations and those corresponding to Lorentz
boosts.
Solution: (a) Under the Lorentz transformation a scalar field

φ(x) → φ′(x) = φ(Λ−1x) = φ(xµ − ωµ
νx

ν) = φ(xµ)− ωµ
νx

ν∂µφ(x).

Since the Lagrangian is also a scalar, we obtain that δL = −ωµ
νx

ν∂µL = −∂µ(ωµ
νx

νL),
which is a total derivative. The Noether’s theorem gives the conserved current in this case

jµ = − ∂L
∂(∂µφ)

ωρ
νx

ν∂ρφ+ ωµ
νx

νL

= −ωρ
ν

[
− ∂L
∂(∂µφ)

xν∂ρφ− δµρxνL
]

= −ωρ
νT

µ
ρ x

ν , (5)

where T µν is the stress-energy tensor. Since there are six independent infinitesimal trans-
formations (ωµν is anti-symmetric!), there are really six currents, one for each independent
ωµν :

(T µ)ρσ = xρT µσ − xσT µρ
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which satisfy ∂µ(T µ)ρσ = 0.
(b) For spatial rotations {ρ, σ} = {1, 2, 3} and the three conserved charges are

Qij =

∫
d3x(xiT 0j − xjT 0i)

which give the total angular momentum of the field. For the three boost the three charges
are

Qii =

∫
d3x(x0T 0i − xiT 00).

The fact that they are conserved implies

dQ0i

dt
=

∫
d3xT 0i + t

∫
d3x

dT 0i

dt
− d

dt

∫
d3xxiT 00 = P i + t

dP i

dt
− d

dt

∫
d3xxiT 00.

Since the momentum P i is already conserved dP i/dt = 0, we have the following time-
invariant quantity under boost

d

dt

∫
d3xxiT 00 = constant.

This is a statement that the centre-of-energy of the field travels at constant velocity. In
Newtonian dynamics the corresponding statement is the centre-of-mass of a system travels
at constant velocity.

Problem 4
(a) A Lorentz transformation Λµ

ν leaves the metric tensor gµν invariant: Λµ
αΛν

β gµν = gαβ.

Use this equation to prove that Λ0
0 ≥ 1 or Λ0

0 ≤ −1.
(b) Show that if two Lorentz transformations Λ1 and Λ2 both have (Λ1)

0
0 ≥ 1 and (Λ2)

0
0 ≥ 1,

then Λ3 = Λ1Λ2 also has (Λ3)
0
0 ≥ 1. In other words, this sign is preserved under Lorentz

group action and can be used to classify Lorentz transformations.
(c) Show that if two Lorentz transformations Λ1 and Λ2 both have Det(Λ1) > 0 and
Det(Λ2) > 0, then Λ3 = Λ1Λ2 also has Det(Λ3) > 0. In other words, this sign is pre-
served under Lorentz group action and can be used to classify Lorentz transformations.
(d) Show all Lorentz transformations with Det(Λ) > 0 and Λ0

0 ≥ 1 form a subgroup of the
Lorentz group.
Solution:
(a) The 00 component of Λµ

ρΛ
ν
σgµν = gρσ implies

1 = g00 = Λµ
0Λ

ν
0 = (Λ0

0)
2 − Λi

0Λ
i
0,

from which we see either Λ0
0 ≥ 1 or Λ0

0 ≤ −1.
(b) Define two three-vectors Xi = Λ 0

1 i and Yi = Λ i
2 0. From (a) we see that |X| =√

(Λ 0
1 0)

2 − 1 and |Y| =
√

(Λ 0
2 0)

2 − 1. On the other hand, (Λ3)
0
0 = Λ 0

1 0Λ
0

2 0−X ·Y. Since
X ·Y ≤ |X||Y|, we arrive at

(Λ3)
0
0 ≥ Λ 0

1 0Λ
0

2 0 −
√

(Λ 0
1 0)

2 − 1
√

(Λ 0
2 0)

2 − 1 ≥ 1.

(c) The statement follows from Det(Λ3) = Det(Λ1)Det(Λ2).
(d) The statement follows from (a), (b), and (c).
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